Two-layer particle swarm optimization with intelligent division of labor
نویسندگان
چکیده
Early studies in particle swarm optimization (PSO) algorithm reveal that the social and cognitive components of swarm, i.e. memory swarm, tend to distribute around the problem's optima. Motivated by these findings, we propose a two-layer PSO with intelligent division of labor (TLPSO-IDL) that aims to improve the search capabilities of PSO through the evolution memory swarm. The evolution in TLPSOIDL is performed sequentially on both the current swarm and the memory swarm. A new learning mechanism is proposed in the former to enhance the swarm's exploration capability, whilst an intelligent division of labor (IDL) module is developed in the latter to adaptively divide the swarm into the exploration and exploitation sections. The proposed TLPSO-IDOL algorithm is thoroughly compared with nine well-establish PSO variants on 16 unimodal and multimodal benchmark problems with or without rotation property. Simulation results indicate that the searching capabilities and the convergence speed of TLPSO-IDL are superior to the state-of-art PSO variants. & 2013 Elsevier Ltd. All rights reserved.
منابع مشابه
Solving a new bi-objective model for a cell formation problem considering labor allocation by multi-objective particle swarm optimization
Mathematical programming and artificial intelligence (AI) methods are known as the most effective and applicable procedures to form manufacturing cells in designing a cellular manufacturing system (CMS). In this paper, a bi-objective programming model is presented to consider the cell formation problem that is solved by a proposed multi-objective particle swarm optimization (MOPSO). The model c...
متن کاملAn adaptive two-layer particle swarm optimization with elitist learning strategy
This study presents an adaptive two-layer particle swarm optimization algorithm with elitist learning strategy (ATLPSO-ELS), which has better search capability than classical particle swarm optimization. In ATLPSO-ELS, we perform evolution on both the current swarm and the memory swarm, motivated by the tendency of the latter swarm to distribute around the problem’s optima. To achieve better co...
متن کاملOPTIMUM SHAPE DESIGN OF DOUBLE-LAYER GRIDS BY QUANTUM BEHAVED PARTICLE SWARM OPTIMIZATION AND NEURAL NETWORKS
In this paper, a methodology is presented for optimum shape design of double-layer grids subject to gravity and earthquake loadings. The design variables are the number of divisions in two directions, the height between two layers and the cross-sectional areas of the structural elements. The objective function is the weight of the structure and the design constraints are some limitations on str...
متن کاملFrequency Control of an Islanded Microgrid based on Intelligent Control of Demand Response using Fuzzy Logic and Particle Swarm Optimization (PSO) Algorithm
Due to the increasing penetration of renewable energies in the power system, the frequency control problem has attracted more attention, while the traditional control methods are not capable of regulating the frequency and securing the stability of the system. In smart grids, demand response as the frequency control tool reduces the dependence on spinning reserve and high cost controllers. In a...
متن کاملAn Expert System for Intelligent Selection of Proper Particle Swarm Optimization Variants
Regarding the large number of developed Particle Swarm Optimization (PSO) algorithms and the various applications for which PSO has been used, selecting the most suitable variant of PSO for solving a particular optimization problem is a challenge for most researchers. In this paper, using a comprehensive survey and taxonomy on different types of PSO, an Expert System (ES) is designed to identif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eng. Appl. of AI
دوره 26 شماره
صفحات -
تاریخ انتشار 2013